Ibáñez A, Duran-Aniotz C, Migeot J, Báez S, Fittipaldi S, Coronel-Oliveros C, Eyre HA, Udeh-Momoh C, Zetterberg H, Alladi S, Sandi C, Robertson IH, Franzen S, Farombi T, Montalvo Ortiz JL, Seshadri S, Court F, Valdes-Sosa P, Xu J, Yu C, Grinberg L, Lawlor B, Sachdev PS, Yaffe K, Hachinski V, Friston K, Tagliazucchi E, Santamaría-García H.
The worldwide rise of neurological and psychiatric conditions poses major challenges. However, current global research remains fragmented, dominated by limited cohorts and poorly integrated datasets that disconnect whole-body health, exposome, and brain health. Theories rarely unify brain measures with extracerebral factors or capture heterogeneity in individual trajectories. We introduce multimodal diversity, a non-linear, non-simplistic causal and ecological construct integrating data representation, whole-body and exposomic factors, and computational modeling to address this situated, embedded, and embodied complexity. This heuristic metamodel integrates global, multilevel data into personalized predictions fostering population inclusion, multimodal integration, diagnostic precision, and equitable, context-sensitive advances in brain health.
Ibáñez A, Duran-Aniotz C, Migeot J, Báez S, Fittipaldi S, Coronel-Oliveros C, Eyre HA, Udeh-Momoh C, Zetterberg H, Alladi S, Sandi C, Robertson IH, Franzen S, Farombi T, Montalvo Ortiz JL, Seshadri S, Court F, Valdes-Sosa P, Xu J, Yu C, Grinberg L, Lawlor B, Sachdev PS, Yaffe K, Hachinski V, Friston K, Tagliazucchi E, Santamaría-García H. Computational whole-body-exposome models for global precision brain health. Nat Commun. 2025 Dec 11;16(1):11078. doi: 10.1038/s41467-025-67448-3. PMID: 41372244; PMCID: PMC12698732.